Geodesics in two-dimensional first-passage percolation
Licea, Cristina ; Newman, Charles M.
Ann. Probab., Tome 24 (1996) no. 2, p. 399-410 / Harvested from Project Euclid
We consider standard first-passage percolation on $\mathbb{Z}^2$. Geodesics are nearest-neighbor paths in $\mathbb{Z}^2$, each of whose segments is time-minimizing. We prove part of the conjecture that doubly infinite geodesics do not exist. Our main tool is a result of independent interest about the coalescing of semi-infinite geodesics.
Publié le : 1996-01-14
Classification:  First-passage percolation,  geodesic,  disordered Ising model,  random metric,  60K35,  82B44,  60D05
@article{1042644722,
     author = {Licea, Cristina and Newman, Charles M.},
     title = {Geodesics in two-dimensional first-passage percolation},
     journal = {Ann. Probab.},
     volume = {24},
     number = {2},
     year = {1996},
     pages = { 399-410},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1042644722}
}
Licea, Cristina; Newman, Charles M. Geodesics in two-dimensional first-passage percolation. Ann. Probab., Tome 24 (1996) no. 2, pp.  399-410. http://gdmltest.u-ga.fr/item/1042644722/