On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates
Hlaváček, Ivan ; Křížek, Michal
Applications of Mathematics, Tome 32 (1987), p. 276-289 / Harvested from Czech Digital Mathematics Library

Second order elliptic systems with boundary conditions of Dirichlet, Neumann's or Newton's type are solved by means of linear finite elements on regular uniform triangulations. Error estimates of the optimal order $O(h^2)$ are proved for the averaged gradient on any fixed interior subdomain, provided the problem under consideration is regular in a certain sense.

Publié le : 1987-01-01
Classification:  32J25,  65N15,  65N30,  73-08,  73C99,  74S05
@article{104259,
     author = {Ivan Hlav\'a\v cek and Michal K\v r\'\i \v zek},
     title = {On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {276-289},
     zbl = {0636.65116},
     mrnumber = {0897832},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104259}
}
Hlaváček, Ivan; Křížek, Michal. On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates. Applications of Mathematics, Tome 32 (1987) pp. 276-289. http://gdmltest.u-ga.fr/item/104259/

J. H. Bramble J. A. Nitsche A. H. Schatz Maximum-norm interior estimates for Ritz-Galerkin methods, Math. Соmр. 29 (1975), 677-688. (1975) | MR 0398120

P. G. Ciarlet The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) | MR 0520174 | Zbl 0383.65058

G. Fichera Existence theorems in elasticity, Encycl. of Physics, ed. S. Flügge, vol. VIa/2, Springer-Verlag, Berlin, 1972. (1972)

G. Geymonat Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Рurа Appl. 69 (1965), 207-284. (1965) | Article | MR 0196262

P. Grisvard Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain;, in: Numerical solution of partial differential equations III, Academic Press, New York, 1976, 207-274. (1976) | MR 0466912

P. Grisvard Boundary value problems in nonsmooth domains, Univ. of Maryland, Dep. of Math., College Park, Lecture Notes 19, 1980. (1980)

E. Hewitt K. Stromberg Real and abstract analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975. (1975) | MR 0367121

I. Hlaváček M. Křížek On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary conditions, Apl. Mat. 32 (1987), 131-154. (1987) | MR 0885758

I. Hlaváček M. Křížek On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type, Apl. Mat. 32 (1987), 200-213. (1987) | MR 0895878

J. Kadlec On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set, Czechoslovak Math. J. 14 (1964), 386-393. (1964) | MR 0170088 | Zbl 0166.37703

V. A. Kondratěv Boundary problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209-292. (1967) | MR 0226187

M. Moussaoui Régularité de la solution d'un problème à derivée oblique, Comptes Rendus Acad. Sci. Paris, 279, sér. A, 25 (1974), 869-872. (1974) | MR 0358062 | Zbl 0293.35014

J. Nečas Les méthodes directes en theorie des équations elliptiques, Masson, Paris, or Academia, Prague, 1967. (1967) | MR 0227584

J. A. Nitsche A. H. Schatz Interior estimate for Ritz-Galerkin methods, Math. Соmр. 28 (1974), 937-958. (1974) | MR 0373325

B. Westergren Interior estimates for elliptic systems of difference equations, (Thesis), Univ. of Göteborg, 1982. (1982)

Q. D. Zhu Natural inner superconvergence for the finite element method, Proc. China-France Sympos. on Finite Element Methods, Beijing, 1982, Gordon and Breach, Sci. Publ., Inc., New York, 1983, 935-960. (1982) | MR 0754041