Differential stability of solutions to air quality control problems in urban area
Holnicki, Piotr ; Sokołowski, Jan ; Żochowski, Antoni
Applications of Mathematics, Tome 32 (1987), p. 240-253 / Harvested from Czech Digital Mathematics Library

The convex optimal control problem for a system described by the parabolic equation is considered. The form of the right derivative of an optimal solution with respect to the parameter is derived. The applications to an air quality control problem are discussed. Numerical result are provided.

Publié le : 1987-01-01
Classification:  35K20,  49A50,  49J45,  49K20,  86A35,  92D40,  93B35,  93C20,  93C75,  93D99
@article{104254,
     author = {Piotr Holnicki and Jan Soko\l owski and Antoni \.Zochowski},
     title = {Differential stability of solutions to air quality control problems in urban area},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {240-253},
     zbl = {0631.49013},
     mrnumber = {0895881},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104254}
}
Holnicki, Piotr; Sokołowski, Jan; Żochowski, Antoni. Differential stability of solutions to air quality control problems in urban area. Applications of Mathematics, Tome 32 (1987) pp. 240-253. http://gdmltest.u-ga.fr/item/104254/

Mathematical Models for Planning and Controlling Air Quality, G. Fronza, P. Melli (eds.), Proceedings of IIASA Workshop, Pergamon Press, 1982. (1982)

P. Holnicki; Al. An urban-scale computer model for short-term prediction of air pollution, Arch. Autom. i Telemech, 1 - 2 (1986), 51 - 71. (1986) | Zbl 0608.90012

P. Holnicki A. Žochowski Numerical methods in forecasting and controlling air pollution problems, Systems Research Institute, Report No. ZTS-15-7/84, Warsaw, 1984 (in Polish). (1984)

J. L. Lions Controle optimal de systemes gouvernes par des equations aux derivees partielles, Dunod, Paris, 1968. (1968) | MR 0244606 | Zbl 0179.41801

K. Malanowski J. Sokolowski Sensitivity of solutions to convex control constrained optimal control problems for distributed parameter systems, Journal of Mathematical Analysis and Applications (to appear). | MR 0861917

G. I. Martchuk Mathematical Modelling in Enviromental Problems, Nauka, Moscow 1982 (in Russian). (1982)

B. N. Pshenitchny Linearization Method, Nauka, Moscow 1983 (in Russian). (1983)

J. Sokolowski Sensitivity analysis of control constrained optimal control problems for distributed parameter systems, (submitted). | Zbl 0647.49019

J. Sokolowski Differential stability of solutions to constrained optimization problems, Applied Mathematics and Optimization, 13 (1985), 97-115. (1985) | Article | MR 0794173 | Zbl 0572.49012

J. Sokolowski Differential stability of control constrained optimal control problems for distributed parameter systems, Proceedings of 2nd International Conference on Control Theory for Distributed Parameter Systems and Applications, Springer Verlag, 331 - 339. | MR 0897570 | Zbl 0578.49021

J. Sokolowski Sensitivity Analysis and Parametric Optimization of Optimal Control Problems for Distributed Parameter Systems, Zeszyty Naukowe Politechniki Warszawskiej, seria Elektronika (to appear).

J. Sokolowski Differential stability of solutions to boundary optimal control problems for parabolic systems, (to appear). | Zbl 0608.49017

P. Holnicki J. Sokolowski A. Žochowski Sensitivity analysis of an optimal control problem arising from air quality control in urban area, Proceedings of 11th IFIP Conference on Systems Modelling and Optimization, Budapest, 1985, Springer Verlag, 331 - 339. (1985) | MR 0903493