On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type
Hlaváček, Ivan ; Křížek, Michal
Applications of Mathematics, Tome 32 (1987), p. 200-213 / Harvested from Czech Digital Mathematics Library

A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton's or Neumann's type. For bounded plane domains with smooth boundary the local $O(h^{3/2})$-superconvergence of the derivatives in the $L^2$-norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet's boundary conditions is treated.

Publié le : 1987-01-01
Classification:  35J25,  65N15,  65N30,  73-08,  73C99,  74S05
@article{104251,
     author = {Ivan Hlav\'a\v cek and Michal K\v r\'\i \v zek},
     title = {On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {200-213},
     zbl = {0636.65115},
     mrnumber = {0895878},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104251}
}
Hlaváček, Ivan; Křížek, Michal. On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type. Applications of Mathematics, Tome 32 (1987) pp. 200-213. http://gdmltest.u-ga.fr/item/104251/

P. G. Ciarlet The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) | MR 0520174 | Zbl 0383.65058

I. Hlaváček M. Křížek On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary conditions, Apl. Mat. 32 (1987), 131 -154. (1987) | MR 0885758

I. Hlaváček J. Nečas On inequalities of Korn's type, Arch. Rational Mech. Anal. 36 (1970), 305-311, 312-334. (1970) | Article

M. Křížek P. Neittaanmäki Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math. 45 (1984), 105-116. (1984) | Article | MR 0761883

L. A. Oganesjan L. A. Ruchovec Variational-difference methods for the solution of elliptic equations, Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979. (1979)

J. Nečas Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) | MR 0227584

M. Zlámal Some superconvergence results in the finite element method, Mathematical Aspects of Finite Element Methods (Proc. Conf., Rome, 1975). Springer-Verlag, Berlin, Heidelberg, New York, 1977, 353-362. (1975) | MR 0488863