A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton's or Neumann's type. For bounded plane domains with smooth boundary the local $O(h^{3/2})$-superconvergence of the derivatives in the $L^2$-norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet's boundary conditions is treated.
@article{104251, author = {Ivan Hlav\'a\v cek and Michal K\v r\'\i \v zek}, title = {On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type}, journal = {Applications of Mathematics}, volume = {32}, year = {1987}, pages = {200-213}, zbl = {0636.65115}, mrnumber = {0895878}, language = {en}, url = {http://dml.mathdoc.fr/item/104251} }
Hlaváček, Ivan; Křížek, Michal. On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type. Applications of Mathematics, Tome 32 (1987) pp. 200-213. http://gdmltest.u-ga.fr/item/104251/
The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) | MR 0520174 | Zbl 0383.65058
On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary conditions, Apl. Mat. 32 (1987), 131 -154. (1987) | MR 0885758
On inequalities of Korn's type, Arch. Rational Mech. Anal. 36 (1970), 305-311, 312-334. (1970) | Article
Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math. 45 (1984), 105-116. (1984) | Article | MR 0761883
Variational-difference methods for the solution of elliptic equations, Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979. (1979)
Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) | MR 0227584
Some superconvergence results in the finite element method, Mathematical Aspects of Finite Element Methods (Proc. Conf., Rome, 1975). Springer-Verlag, Berlin, Heidelberg, New York, 1977, 353-362. (1975) | MR 0488863