Bayes unbiased estimation in a model with two variance components
Stuchlý, Jaroslav
Applications of Mathematics, Tome 32 (1987), p. 120-130 / Harvested from Czech Digital Mathematics Library

In the paper an explicit expression for the Bayes invariant quadratic unbiased estimate of the linear function of the variance components is presented for the mixed linear model $\bold{t=X\beta+\epsilon}$, $\bold{E(t)=X\beta}$, $\bold{D(t)=0_1U_1+0_2U_2}$ with the unknown variance componets in the normal case. The matrices $\bold{U_1}$, $\bold{U_2}$ may be singular. Applications to two examples of the analysis of variance are given.

Publié le : 1987-01-01
Classification:  62C15,  62F15,  62J10,  62J99
@article{104241,
     author = {Jaroslav Stuchl\'y},
     title = {Bayes unbiased estimation in a model with two variance components},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {120-130},
     zbl = {0625.62019},
     mrnumber = {0885759},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104241}
}
Stuchlý, Jaroslav. Bayes unbiased estimation in a model with two variance components. Applications of Mathematics, Tome 32 (1987) pp. 120-130. http://gdmltest.u-ga.fr/item/104241/

S. Gnot J. Kleffe Quadratic estimation in mixed linear models with two variance components, Journal of statistical planning and Inference 8 (1983) 267-279. (1983) | Article | MR 0729245

L. Kubáček Fundaments of the theory of estimates, (Slovak). Veda, Publishing House of Slovak Acad. Sc., Bratislava 1983,. (1983)

C. R. Rao Minimum variance quadratic unbiased estimation of variance components, J. Multivariate Anal. (1971) I, 445-456. (1971) | Article | MR 0301870 | Zbl 0259.62061

C. R. Rao Linear statistical inference and its applications, J. Wiley, New York 1973. (1973) | MR 0346957 | Zbl 0256.62002

C. R. Rao S. K. Mitra Generalized inverse of matrices and its applications, J. Wiley, New York 1972. (1972) | MR 0338013