Two-parametric motions in $E_3$
Karger, Adolf
Applications of Mathematics, Tome 32 (1987), p. 96-119 / Harvested from Czech Digital Mathematics Library

The paper deals with the local differential geometry of two-parametric motions in the Euclidean space. The first part of the paper contains contemporary formulation of classical results in this area together with the connection to the elliptical differential geometry. The remaining part contains applications. Necessary and sufficient conditions for splitting of a two-parametric motion into a product of two one-parametric motions, characterization of motions with constant invariants and some others. The case of rolling of two isometric surfaces is treated in detail.

Publié le : 1987-01-01
Classification:  53A17
@article{104240,
     author = {Adolf Karger},
     title = {Two-parametric motions in $E\_3$},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {96-119},
     zbl = {0621.53010},
     mrnumber = {0885757},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104240}
}
Karger, Adolf. Two-parametric motions in $E_3$. Applications of Mathematics, Tome 32 (1987) pp. 96-119. http://gdmltest.u-ga.fr/item/104240/

W. Blaschke Nicht-Euklidische Geometrie und Mechanik, Hamb. Math. Einzelschriften 34. Heft, (1942). (1942) | MR 0009861 | Zbl 0027.13304

O. Bottema Instantaneous kinematics for spatial two-parameter motion, Proceedings of Koninkl. Nedérl. Akad. van Wettenschappen - Amsterdam, Series B, 74, No. 1, (1971). (1971) | MR 0281104 | Zbl 0208.24302

O. Kowalski The invariant classification of 3-dim. linear subspaces of infinitesimal isometrics of $E_3$, Comm. Math. Univ. Car. 8 (1967), No. 4, 635-649. (1967) | MR 0228629

O. Kowalski Orbits of transformation groups on certain Grasmann manifiolds, Czech. Math. Journ. 18 (93) (1968), 144-177 and 240-273. (1968) | MR 0231939

H. R. Müller Sphärische Kinematik, Berlin 1962. (1962) | MR 0145715

A. Schoenflies M. Grübler Kinematik, Encyklopädie der Mathematischen Wissenschaften, Band 4 (I), Heft 2, 3, Leipzig 1902. (1902)