The paper deals with the local differential geometry of two-parametric motions in the Euclidean space. The first part of the paper contains contemporary formulation of classical results in this area together with the connection to the elliptical differential geometry. The remaining part contains applications. Necessary and sufficient conditions for splitting of a two-parametric motion into a product of two one-parametric motions, characterization of motions with constant invariants and some others. The case of rolling of two isometric surfaces is treated in detail.
@article{104240, author = {Adolf Karger}, title = {Two-parametric motions in $E\_3$}, journal = {Applications of Mathematics}, volume = {32}, year = {1987}, pages = {96-119}, zbl = {0621.53010}, mrnumber = {0885757}, language = {en}, url = {http://dml.mathdoc.fr/item/104240} }
Karger, Adolf. Two-parametric motions in $E_3$. Applications of Mathematics, Tome 32 (1987) pp. 96-119. http://gdmltest.u-ga.fr/item/104240/
Nicht-Euklidische Geometrie und Mechanik, Hamb. Math. Einzelschriften 34. Heft, (1942). (1942) | MR 0009861 | Zbl 0027.13304
Instantaneous kinematics for spatial two-parameter motion, Proceedings of Koninkl. Nedérl. Akad. van Wettenschappen - Amsterdam, Series B, 74, No. 1, (1971). (1971) | MR 0281104 | Zbl 0208.24302
The invariant classification of 3-dim. linear subspaces of infinitesimal isometrics of $E_3$, Comm. Math. Univ. Car. 8 (1967), No. 4, 635-649. (1967) | MR 0228629
Orbits of transformation groups on certain Grasmann manifiolds, Czech. Math. Journ. 18 (93) (1968), 144-177 and 240-273. (1968) | MR 0231939
Sphärische Kinematik, Berlin 1962. (1962) | MR 0145715
Kinematik, Encyklopädie der Mathematischen Wissenschaften, Band 4 (I), Heft 2, 3, Leipzig 1902. (1902)