Stability analysis of reducible quadrature methods for Volterra integro-differential equations
Bakke, Vernon L. ; Jackiewicz, Zdzisław
Applications of Mathematics, Tome 32 (1987), p. 37-48 / Harvested from Czech Digital Mathematics Library

Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation $y'(t)=\gamma y(t) + \int^t_0(\lambda + \mu t + vs) y(s) ds$ and absolute stability is deffined in terms of the real parameters $\gamma, \lambda, \mu$ and $v$. Sufficient conditions are illustrated for $(0;0)$ - methods and for combinations of Adams-Moulton and backward differentiation methods.

Publié le : 1987-01-01
Classification:  45J05,  45M10,  65Q05,  65R20
@article{104234,
     author = {Vernon L. Bakke and Zdzis\l aw Jackiewicz},
     title = {Stability analysis of reducible quadrature methods for Volterra integro-differential equations},
     journal = {Applications of Mathematics},
     volume = {32},
     year = {1987},
     pages = {37-48},
     zbl = {0624.65140},
     mrnumber = {0879328},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104234}
}
Bakke, Vernon L.; Jackiewicz, Zdzisław. Stability analysis of reducible quadrature methods for Volterra integro-differential equations. Applications of Mathematics, Tome 32 (1987) pp. 37-48. http://gdmltest.u-ga.fr/item/104234/

С. T. H. Baker A. Makroglou E. Short Regions of stability in the numerical treatment of Volterra integro-differential equations, SIAM J. Numer. Anal., Vol. 16, No. 6, December, 1979. (1979) | MR 0551314

V. L. Bakke Z. Jackiewicz Stability of reducible quadrature methods for Volterra integral equations of the second kind, Numer. Math. 47 (1985), 159-173. (1985) | Article | MR 0799682

V. L. Bakke Z. Jackiewicz Boundedness of solutions of difference equations and application to numerical solutions of Volterra integral equations of the second kind, J. Math. Anal. Appl., 115 (1986), 592-605. (1986) | Article | MR 0836249

H. Brunner A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations, J. Comput. App. Math., Vol. 8, No. 3, 1982. (1982) | MR 0682889 | Zbl 0485.65087

H. Brunner J. D. Lambert Stability of numerical methods for Volterra integro-differential equations, Computing 12, 75-89 (1974). (1974) | Article | MR 0418490

C. J. Gladwin R. Jeltsch Stability of quadrature rule methods for first kind Volterra integral equations, BIT 14, 144-151 (1974). (1974) | Article | MR 0502108

P. Linz Linear multistep methods for Volterra integro-differential equations, J. Assoc. Comput. Mach., 16 (1969), 295-301. (1969) | Article | MR 0239786 | Zbl 0183.45002

J. Matthys A-stable linear multistep methods for Volterra integro-differential equations, Numer. Math. 27, 85-94 (1976). (1976) | Article | MR 0436638 | Zbl 0319.65072

D. Sanchez A short note on asymptotic estimates of stability regions for a certain class of Volterra integro-differential equations, Manuscript, Department of Mathematics and Statistics, University of New Mexico, May, 1984. (1984)

L. M. Milne-Thompson The calculus of finite differences, MacMillan& Co., London, 1933. (1933)

P. H. M. Wolkenfelt The construction of reducible quadrature rules for Volterra integral and integro-differential equations, IMA Journal of Numerical Analysis, 2, 131-152 (1982). (1982) | Article | MR 0668589 | Zbl 0481.65084

P. H. M. Wolkenfelt On the numerical stability of reducible quadrature methods for second kind Volterra integral equations, Z. Angew. Math. Mech., 61, 399-401 (1981). (1981) | Article | MR 0638029 | Zbl 0466.65073