The paper is concerned with the finite difference approximation of the Dirichlet problem for a second order elliptic partial differential equation in an $n$-dimensional domain. Considering the simplest finite difference scheme and assuming a sufficient smoothness of the domain, coefficients of the equation, right-hand part, and boundary condition, the author develops a general error expansion formula in which the mesh sizes of an ($n$-dimensional) rectangular grid in the directions of the individual axes appear as parameters.
@article{104232, author = {Ta Van Dinh}, title = {On multi-parameter error expansions in finite difference methods for linear Dirichlet problems}, journal = {Applications of Mathematics}, volume = {32}, year = {1987}, pages = {16-24}, zbl = {0629.65109}, mrnumber = {0879326}, language = {en}, url = {http://dml.mathdoc.fr/item/104232} }
Dinh, Ta Van. On multi-parameter error expansions in finite difference methods for linear Dirichlet problems. Applications of Mathematics, Tome 32 (1987) pp. 16-24. http://gdmltest.u-ga.fr/item/104232/
Повышение точности решений разностных схем, Москва, Наука, 1979. (1979) | Zbl 1225.01075
Линейные и квазилинейные уравнения эллиптического типа, Москва, Наука, 1973. (1973) | Zbl 1221.53041