The Wills functional and Gaussian processes
Vitale, Richard A.
Ann. Probab., Tome 24 (1996) no. 2, p. 2172-2178 / Harvested from Project Euclid
The Wills functional from the theory of lattice point enumeration can be adapted to produce the following exponential inequality for zero-mean Gaussian processes: $$E \exp [\sup_t (X_t - (1/2) \sigma_t^2)] \leq \exp (E \sup_t X_t).$$ ¶ An application is a new proof of the deviation inequality for the supremum of a Gaussian process above its mean: $$P(\sup_t X_t - E \sup_t X_t \geq a) \leq \exp (-\frac{(1/2) \alpha^2}{\sigma^2}),$$ where $a > 0$ and $\sigma^2 = \sup_t \sigma_t^2$.
Publié le : 1996-10-14
Classification:  Alexandrov-Fenchel inequality,  Gaussian process,  deviation inequality,  exponential bound,  intrinsic volume,  mixed volume,  quermassintegral,  tail bound,  Wills functional,  60G15,  52A20,  60G17
@article{1041903224,
     author = {Vitale, Richard A.},
     title = {The Wills functional and Gaussian processes},
     journal = {Ann. Probab.},
     volume = {24},
     number = {2},
     year = {1996},
     pages = { 2172-2178},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1041903224}
}
Vitale, Richard A. The Wills functional and Gaussian processes. Ann. Probab., Tome 24 (1996) no. 2, pp.  2172-2178. http://gdmltest.u-ga.fr/item/1041903224/