New Donsker classes
van der Vaart, Aad
Ann. Probab., Tome 24 (1996) no. 2, p. 2128-2140 / Harvested from Project Euclid
Several classes of functions are shown to be Donsker by an argument based on partitioning the sample space. One example is the class of all nondecreasing functions $f: \mathbb{R} \to \mathbb{R}$ such that $0 \leq f \leq F$ for a given function F with $\int F^2 dP/ \sqrt{1-P} < \infty$.
Publié le : 1996-10-14
Classification:  Bracketing number,  covering number,  entropy,  Donsker class,  empirical central limit theorem,  60F17
@article{1041903221,
     author = {van der Vaart, Aad},
     title = {New Donsker classes},
     journal = {Ann. Probab.},
     volume = {24},
     number = {2},
     year = {1996},
     pages = { 2128-2140},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1041903221}
}
van der Vaart, Aad. New Donsker classes. Ann. Probab., Tome 24 (1996) no. 2, pp.  2128-2140. http://gdmltest.u-ga.fr/item/1041903221/