Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant
Aspandiiarov, S. ; Iasnogorodski, R. ; Menshikov, M.
Ann. Probab., Tome 24 (1996) no. 2, p. 932-960 / Harvested from Project Euclid
In this paper we get some sufficient conditions for the finiteness or nonfiniteness of the passage-time moments for nonnegative discrete parameter processes. The developed criteria are closely connected with the well-known results of Foster for the ergodicity of Markov chains and are given in terms of sub(super)martingales. Then, as an application of the obtained results, we get explicit conditions for the finiteness or nonfiniteness of passage-time moments for reflected random walks in a quadrant with zero drift in the interior.
Publié le : 1996-04-14
Classification:  Passage-time,  recurrence classification,  reflected random walks,  60G42,  60J10,  60J60
@article{1039639371,
     author = {Aspandiiarov, S. and Iasnogorodski, R. and Menshikov, M.},
     title = {Passage-time moments for nonnegative stochastic processes and an
		 application to reflected random walks in a quadrant},
     journal = {Ann. Probab.},
     volume = {24},
     number = {2},
     year = {1996},
     pages = { 932-960},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1039639371}
}
Aspandiiarov, S.; Iasnogorodski, R.; Menshikov, M. Passage-time moments for nonnegative stochastic processes and an
		 application to reflected random walks in a quadrant. Ann. Probab., Tome 24 (1996) no. 2, pp.  932-960. http://gdmltest.u-ga.fr/item/1039639371/