On a problem of Erdös and Taylor
Khoshnevisan, Davar ; Lewis, Thomas M. ; Shi, Zhan
Ann. Probab., Tome 24 (1996) no. 2, p. 761-787 / Harvested from Project Euclid
Let ${S_n, N \geq 0}$ be a centered d-dimensional random walk $(d \geq 3)$ and consider the so-called future infima process $J_n =^{df} \inf _{k \geq n} \|S_k\|$. This paper is concerned with obtaining precise integral criteria for a function to be in the Lévy upper class of J. This solves an old problem of Erdös and Taylor, who posed the problem for the simple symmetric random walk on $mathbb{Z}^d, d \geq 3$. These results are obtained by a careful analysis of the future infima of transient Bessel processes and using strong approximations. Our results belong to a class of Ciesielski-Taylor theorems which relate d-and $(d-2)$-dimensional Bessel processes.
Publié le : 1996-04-14
Classification:  Brownian motion,  Bessel processes,  transience,  random walk,  60J65,  60G17,  60J15,  60F05
@article{1039639361,
     author = {Khoshnevisan, Davar and Lewis, Thomas M. and Shi, Zhan},
     title = {On a problem of Erd\"os and Taylor},
     journal = {Ann. Probab.},
     volume = {24},
     number = {2},
     year = {1996},
     pages = { 761-787},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1039639361}
}
Khoshnevisan, Davar; Lewis, Thomas M.; Shi, Zhan. On a problem of Erdös and Taylor. Ann. Probab., Tome 24 (1996) no. 2, pp.  761-787. http://gdmltest.u-ga.fr/item/1039639361/