Kernel density estimation for linear processes
Wu, Wei Biao ; Mielniczuk, Jan
Ann. Statist., Tome 30 (2002) no. 1, p. 1441-1459 / Harvested from Project Euclid
In this paper we provide a detailed characterization of the asymptotic behavior of kernel density estimators for one-sided linear processes. The conjecture that asymptotic normality for the kernel density estimator holds under short-range dependence is proved under minimal assumptions on bandwidths. We also depict the dichotomous and trichotomous phenomena for various choices of bandwidths when the process is long-range dependent.
Publié le : 2002-10-14
Classification:  Long- and short-range dependence,  kernel density estimators,  linear process,  martingale central limit theorem,  62F05,  60F17,  60G35
@article{1035844982,
     author = {Wu, Wei Biao and Mielniczuk, Jan},
     title = {Kernel density estimation for linear processes},
     journal = {Ann. Statist.},
     volume = {30},
     number = {1},
     year = {2002},
     pages = { 1441-1459},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1035844982}
}
Wu, Wei Biao; Mielniczuk, Jan. Kernel density estimation for linear processes. Ann. Statist., Tome 30 (2002) no. 1, pp.  1441-1459. http://gdmltest.u-ga.fr/item/1035844982/