We study the distributions of the areas under the positive parts of
a Brownian motion process B and a Brownian bridge process U: with
$A^+ = \int_0^1 B^+ (t) dt$ and $A_0^+ = \int_0^1 U^+ (t) dt$, we use excursion
theory to show that the Laplace transforms $\Psi^+ (s) = E \exp (-sA^+)$ and
$\Psi_0^+ (s) = E \exp (-sA_0^+)$ of $A^+$ of $A_0^+$ satisfy $$\int_0^{\infty}
e^{-\lambda s \Psi +} (\sqrt{2} s^{3/2}) ds = \frac{\lambda^{-1/2} Ai(\lambda)
+ (1/3 - \int_0^{\lambda} Ai(t) dt)}{\sqrt{\lambda} Ai(\lambda) - Ai
(\lambda)}.$$ and $$\int_0^{\infty} \frac{e^{-\lambda s}{\sqrt{s}} \Psi_0^+
(\sqrt{2} s^{3/2}) ds = 2 \sqrt{\pi} \frac{Ai(\lambda)}{\sqrt{\lambda}
Ai'(\lambda) - Ai(\lambda)}.$$ where Ai is Airy's function. At the
same time, our approach via excursion theory unifies previous calculations of
this type due to Kac, Groeneboom, Louchard, Shepp and Takács for other
Brownian areas. Similarly, we use excursion theory to obtain recursion formulas
for the moments of the "positive part" areas. We have not yet
succeeded in inverting the double Laplace transforms because of the structure
of the function appearing in the denominators, namely, $\sqrt{\lambda}
Ai(\lambda) - Ai'(\lambda)$.
@article{1035463325,
author = {Perman, Mihael and Wellner, Jon A.},
title = {On the distribution of Brownian areas},
journal = {Ann. Appl. Probab.},
volume = {6},
number = {1},
year = {1996},
pages = { 1091-1111},
language = {en},
url = {http://dml.mathdoc.fr/item/1035463325}
}
Perman, Mihael; Wellner, Jon A. On the distribution of Brownian areas. Ann. Appl. Probab., Tome 6 (1996) no. 1, pp. 1091-1111. http://gdmltest.u-ga.fr/item/1035463325/