Gaussian limit fields for the integrated periodogram
Klöppelberg, Claudia ; Mikosch, Thomas
Ann. Appl. Probab., Tome 6 (1996) no. 1, p. 969-991 / Harvested from Project Euclid
Functionals of a two-parameter integrated periodogram have been used for detecting a change in the spectral distribution of a stationary sequence. The bases for these results are functional central limit theorems for the integrated periodogram with a Gaussian limit field. We prove functional central limit theorems for a general linear sequence having a finite fourth moment which is shown to be the optimal moment condition. Our approach is via an approximation of the integrated periodogram by a finite linear combination of sample autocovariances. This gives special insight into the structure of the Gaussian limit field.
Publié le : 1996-08-14
Classification:  Moving average process,  spectral distribution,  integrated periodogram,  functional central limit theorem,  Gaussian field,  Kiefer process,  empirical process,  sample autocovariance,  changepoint,  60F17,  60G60,  60G10,  62M15
@article{1034968236,
     author = {Kl\"oppelberg, Claudia and Mikosch, Thomas},
     title = {Gaussian limit fields for the integrated periodogram},
     journal = {Ann. Appl. Probab.},
     volume = {6},
     number = {1},
     year = {1996},
     pages = { 969-991},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1034968236}
}
Klöppelberg, Claudia; Mikosch, Thomas. Gaussian limit fields for the integrated periodogram. Ann. Appl. Probab., Tome 6 (1996) no. 1, pp.  969-991. http://gdmltest.u-ga.fr/item/1034968236/