Functional large deviation principles for first-passage-time processes
Puhalskii, Anatolii A. ; Whitt, Ward
Ann. Appl. Probab., Tome 7 (1997) no. 1, p. 362-381 / Harvested from Project Euclid
We apply an extended contraction principle and superexponential convergence in probability to show that a functional large deviation principle for a sequence of stochastic processes implies a corresponding functional large deviation principle for an associated sequence of first-passage-time or inverse processes. Large deviation principles are established for both inverse processes and centered inverse processes, based on corresponding results for the original process. We apply these results to obtain functional large deviation principles for renewal processes and superpositions of independent renewal processes.
Publié le : 1997-05-14
Classification:  Large deviations,  large deviation principle,  Skorohod topologies,  contraction principle,  first passage times,  inverse processes,  counting processes,  renewal processes,  superpositions of renewal processes,  60F10,  60G55,  60K05
@article{1034625336,
     author = {Puhalskii, Anatolii A. and Whitt, Ward},
     title = {Functional large deviation principles for first-passage-time
		 processes},
     journal = {Ann. Appl. Probab.},
     volume = {7},
     number = {1},
     year = {1997},
     pages = { 362-381},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1034625336}
}
Puhalskii, Anatolii A.; Whitt, Ward. Functional large deviation principles for first-passage-time
		 processes. Ann. Appl. Probab., Tome 7 (1997) no. 1, pp.  362-381. http://gdmltest.u-ga.fr/item/1034625336/