Asymptotic properties of estimators for autoregressive models with errors in variables
Chanda, Kamal C.
Ann. Statist., Tome 24 (1996) no. 6, p. 423-430 / Harvested from Project Euclid
Let ${X_t, t \epsilon \mathbb{Z}}$ be an observable strictly stationary sequence of random variables and let $X_t = U_t + \varepsilon_t$, where ${U_t}$ is an AR (p) and ${\varepsilon_t}$ is a strictly stationary sequence representing errors of measurement in ${X_t}$, with $E{\varepsilon_1} = 0$. Under some broad assumptions on ${\varepsilon_t}$ we establish the consistency properties as well as the rates of convergence for the standard estimators for the autoregressive parameters computed from a set of modified Yule-Walker equations.
Publié le : 1996-02-14
Classification:  Error in variable autoregressive model,  identifiable parameter,  62M10,  62F12
@article{1033066218,
     author = {Chanda, Kamal C.},
     title = {Asymptotic properties of estimators for autoregressive models with errors in variables},
     journal = {Ann. Statist.},
     volume = {24},
     number = {6},
     year = {1996},
     pages = { 423-430},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1033066218}
}
Chanda, Kamal C. Asymptotic properties of estimators for autoregressive models with errors in variables. Ann. Statist., Tome 24 (1996) no. 6, pp.  423-430. http://gdmltest.u-ga.fr/item/1033066218/