This paper establishes the asymptotic uniform linearity of M- and R-scores in a family of nonlinear time series and regression models. It also gives an asymptotic expansion of the standardized sequential residual empirical process in these models. These results are, in turn, used to obtain the asymptotic normality of certain classes of M-, R- and minimum distance estimators of the underlying parameters. The classes of estimators considered include analogs of Hodges-Lehmann, Huber and LAD (least absolute deviation) estimators. Some applications to the change point and testing of the goodness-of-fit problems in threshold and amplitude-dependent exponential autoregression models are also given. The paper thus offers a unified functional approach to some aspects of robust inference for a large class of nonlinear time series models.
Publié le : 1996-02-14
Classification:
Asymptotic uniform linearity,
minimum distance estimators,
threshold autoregression models,
change point,
goodness-of-fit,
asymptotically distribution free,
60F17,
62M10
@article{1033066216,
author = {Koul, Hira L.},
title = {Asymptotics of some estimators and sequential residual empiricals in nonlinear time series},
journal = {Ann. Statist.},
volume = {24},
number = {6},
year = {1996},
pages = { 380-404},
language = {en},
url = {http://dml.mathdoc.fr/item/1033066216}
}
Koul, Hira L. Asymptotics of some estimators and sequential residual empiricals in nonlinear time series. Ann. Statist., Tome 24 (1996) no. 6, pp. 380-404. http://gdmltest.u-ga.fr/item/1033066216/