The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones
Casalis, M. ; Letac, G.
Ann. Statist., Tome 24 (1996) no. 6, p. 763-786 / Harvested from Project Euclid
We characterize the Wishart distributions on a symmetric cone C. If $C = (0, +\infty)$, this has been done by Lukacs in 1955. If C is the cone of positive definite symmetric matrices, this has been done by Olkin and Rubin in 1962. We both shorten and extend the Olkin-Rubin proof (sometimes obscure) by using three modern ideas: (i) try to avoid artificial coordinates in differential geometry; (ii) the variance function of a natural exponential family F characterizes F; (iii) symmetric matrices are a particular example of a Euclidean simple Jordan algebra.
Publié le : 1996-04-14
Classification:  Beta and Dirichlet distributions,  natural exponential families,  Jordan algebras,  62H05,  60E10
@article{1032894464,
     author = {Casalis, M. and Letac, G.},
     title = {The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones},
     journal = {Ann. Statist.},
     volume = {24},
     number = {6},
     year = {1996},
     pages = { 763-786},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1032894464}
}
Casalis, M.; Letac, G. The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones. Ann. Statist., Tome 24 (1996) no. 6, pp.  763-786. http://gdmltest.u-ga.fr/item/1032894464/