Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator
Hess, Christian
Ann. Statist., Tome 24 (1996) no. 6, p. 1298-1315 / Harvested from Project Euclid
Using the variational properties of epi-convergence together with suitable results on the measurability of multifunctions and integrands, we prove a strong law of large numbers for sequences of integrands from which we deduce a general theorem of almost sure convergence (strong consistency) for the maximum likelihood estimator.
Publié le : 1996-06-14
Classification:  Maximum likelihoood estimator,  strong consistency,  measurable multifunctions,  normal integrands,  set convergence,  epi-convergence,  28B20,  49K45,  54D35,  62F12,  62H12,  62L20
@article{1032526970,
     author = {Hess, Christian},
     title = {Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator},
     journal = {Ann. Statist.},
     volume = {24},
     number = {6},
     year = {1996},
     pages = { 1298-1315},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1032526970}
}
Hess, Christian. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. Ann. Statist., Tome 24 (1996) no. 6, pp.  1298-1315. http://gdmltest.u-ga.fr/item/1032526970/