The $2d+4$ simple quadratic natural exponential families on ${\bf R}\sp d$
Casalis, M.
Ann. Statist., Tome 24 (1996) no. 6, p. 1828-1854 / Harvested from Project Euclid
The present paper describes all the natural exponential families on $\mathbb{R}^d$ whose variance function is of the form $V(m) = am \otimes m + B(m) + C$, with $m \otimes m(\theta) = \langle \theta, m \rangle m$ and B linear in m. There are $2d + 4$ types of such families, which are built from particular mixtures of families of Normal, Poisson, gamma, hyperbolic on $\mathbb{R}^d$ and negative-multinomial distributions. The proof of this result relies mainly on techniques used in the elementary theory of Lie algebras.
Publié le : 1996-08-14
Classification:  Variance functions,  Morris class,  62E10,  60E10
@article{1032298298,
     author = {Casalis, M.},
     title = {The $2d+4$ simple quadratic natural exponential families on ${\bf R}\sp d$},
     journal = {Ann. Statist.},
     volume = {24},
     number = {6},
     year = {1996},
     pages = { 1828-1854},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1032298298}
}
Casalis, M. The $2d+4$ simple quadratic natural exponential families on ${\bf R}\sp d$. Ann. Statist., Tome 24 (1996) no. 6, pp.  1828-1854. http://gdmltest.u-ga.fr/item/1032298298/