Consistency for the least squares estimator in nonparametric regression
van de Geer, Sara ; Wegkamp, Marten
Ann. Statist., Tome 24 (1996) no. 6, p. 2513-2523 / Harvested from Project Euclid
We shall study the general regression model $Y = g_0 (X) + \varepsilon$, where X and $varepsilon$ are independent. The available information about $g_0$ can be expressed by $g_0 \epsilon \mathscr{G}$ for some class $\mathscr{G}$. As an estimator of $g_0$ we choose the least squares estimator. We shall give necessary and sufficient conditions for consistency of this estimator in terms of (basically) geometric properties of $\mathscr{G}$. Our main tool will be the theory of empirical processes.
Publié le : 1996-12-14
Classification:  Consistency,  empirical process,  entropy,  Glivenko-Cantelli classes,  least squares estimation,  regression,  62G05,  62J02
@article{1032181165,
     author = {van de Geer, Sara and Wegkamp, Marten},
     title = {Consistency for the least squares estimator in nonparametric regression},
     journal = {Ann. Statist.},
     volume = {24},
     number = {6},
     year = {1996},
     pages = { 2513-2523},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1032181165}
}
van de Geer, Sara; Wegkamp, Marten. Consistency for the least squares estimator in nonparametric regression. Ann. Statist., Tome 24 (1996) no. 6, pp.  2513-2523. http://gdmltest.u-ga.fr/item/1032181165/