A universally acceptable smoothing factor for kernel density estimates
Devroye, Luc ; Lugosi, Gábor
Ann. Statist., Tome 24 (1996) no. 6, p. 2499-2512 / Harvested from Project Euclid
We define a minimum distance estimate of the smoothing factor for kernel density estimates, based on a methodology first developed by Yatracos. It is shown that if $f_{nh}$ denotes the kernel density estimate on $\mathbb{R}^d$ for an i.i.d. sample of size n drawn from an unknown density f, where h is the smoothing factor, and if $f_n$ is the kernel estimate with the same kernel and with the proposed new data-based smoothing factor, then, under a regularity condition on the kernel K, $$\sup_f \limsup_{n \to \infty} \frac{E \int | f_n - f|dx}{\inf_{h>0} E \int |f_{nh} - f|dx} \leq 3.$$ This is the first published smoothing factor that can be proven to have this property.
Publié le : 1996-12-14
Classification:  Density estimation,  kernel estimate,  convergence,  smoothing factor,  minimum distance estimate,  asymptotic optimality,  62G05
@article{1032181164,
     author = {Devroye, Luc and Lugosi, G\'abor},
     title = {A universally acceptable smoothing factor for kernel density estimates},
     journal = {Ann. Statist.},
     volume = {24},
     number = {6},
     year = {1996},
     pages = { 2499-2512},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1032181164}
}
Devroye, Luc; Lugosi, Gábor. A universally acceptable smoothing factor for kernel density estimates. Ann. Statist., Tome 24 (1996) no. 6, pp.  2499-2512. http://gdmltest.u-ga.fr/item/1032181164/