Random censoring in set-indexed survival analysis
Ivanoff, B. Gail ; Merzbach, Ely
Ann. Appl. Probab., Tome 12 (2002) no. 1, p. 944-971 / Harvested from Project Euclid
Using the theory of set-indexed martingales, we develop a general model for survival analysis with censored data which is parameterized by sets instead of time points. We define a set-indexed Nelson--Aalen estimator for the integrated hazard function with the presence of a censoring by a random set which is a stopping set. We prove that this estimator is asymptotically unbiased and consistent. A central limit theorem is given. This model can be applied to cases when censoring occurs in geometrical objects or patterns, and is a generalization of models with multidimensional failure times.
Publié le : 2002-08-14
Classification:  Censoring,  stopping set,  set-indexed martingale,  hazard function,  survival analysis,  Volterra equation,  estimator,  central limit theorem,  62G05,  60G42,  60G55
@article{1031863176,
     author = {Ivanoff, B. Gail and Merzbach, Ely},
     title = {Random censoring in set-indexed survival analysis},
     journal = {Ann. Appl. Probab.},
     volume = {12},
     number = {1},
     year = {2002},
     pages = { 944-971},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1031863176}
}
Ivanoff, B. Gail; Merzbach, Ely. Random censoring in set-indexed survival analysis. Ann. Appl. Probab., Tome 12 (2002) no. 1, pp.  944-971. http://gdmltest.u-ga.fr/item/1031863176/