An Edgeworth expansion for symmetric statistics
Bentkus, V. ; Götze, F. ; van Zwet, W. R.
Ann. Statist., Tome 25 (1997) no. 6, p. 851-896 / Harvested from Project Euclid
We consider asymptotically normal statistics which are symmetric functions of N i.i.d. random variables. For these statistics we prove the validity of an Edgeworth expansion with remainder $O(N^{-1})$ under Cramér's condition on the linear part of the statistic and moment assumptions for all parts of the statistic. By means of a counterexample we show that it is generally not possible to obtain an Edgeworth expansion with remainder $o(N^{-1})$ without imposing additional assumptions on the structure of the nonlinear part of the statistic.
Publié le : 1997-04-14
Classification:  Asymptotic expansion,  Edgeworth expansions,  symmetric statistics,  Hoeffdings's decomposition,  $U$-statistics,  functions of sample means,  functionals of empirical distribution functions,  linear combinations of order statistics,  Student's statistic,  62E20,  60F05
@article{1031833676,
     author = {Bentkus, V. and G\"otze, F. and van Zwet, W. R.},
     title = {An Edgeworth expansion for symmetric statistics},
     journal = {Ann. Statist.},
     volume = {25},
     number = {6},
     year = {1997},
     pages = { 851-896},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1031833676}
}
Bentkus, V.; Götze, F.; van Zwet, W. R. An Edgeworth expansion for symmetric statistics. Ann. Statist., Tome 25 (1997) no. 6, pp.  851-896. http://gdmltest.u-ga.fr/item/1031833676/