M-estimation, convexity and quantiles
Koltchinskii, V. I.
Ann. Statist., Tome 25 (1997) no. 6, p. 435-477 / Harvested from Project Euclid
The paper develops a class of extensions of the univariate quantile function to the multivariate case (M-quantiles), related in a certain way to M-parameters of a probability distribution and their M-estimators. The spatial (geometric) quantiles, recently introduced by Koltchinskii and Dudley and by Chaudhuri as well as the regression quantiles of Koenker and Basset, are the examples of the M-quantile function discussed in the paper. We study the main properties of M-quantiles and develop the asymptotic theory of empirical M-quantiles. We useM-quantiles to extend L-parameters and L-estimators to the multivariate case; to introduce a bootstrap test for spherical symmetry of a multivariate distribution, and to extend the notion of regression quantiles to multiresponse linear regression models.
Publié le : 1997-04-14
Classification:  Quantile function,  spatial quantiles,  empirical quantiles,  regression quantiles,  $M$-parameter,  $M$-estimator,  empirical processes,  60F05,  62E20,  60F17
@article{1031833659,
     author = {Koltchinskii, V. I.},
     title = {M-estimation, convexity and quantiles},
     journal = {Ann. Statist.},
     volume = {25},
     number = {6},
     year = {1997},
     pages = { 435-477},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1031833659}
}
Koltchinskii, V. I. M-estimation, convexity and quantiles. Ann. Statist., Tome 25 (1997) no. 6, pp.  435-477. http://gdmltest.u-ga.fr/item/1031833659/