Asymptotic inference for near unit roots in spatial autoregression
Bhattacharyya, B. B. ; Richardson, G. D. ; Franklin, L. A.
Ann. Statist., Tome 25 (1997) no. 6, p. 1709-1724 / Harvested from Project Euclid
Asymptotic inference for estimators of $(\alpha_n, \beta_n)$ in the spatial autoregressive model $Z_{ij}(n) = \alpha_n Z_{i-1, j}(n) + \beta_n Z_{i, j-1}(n) - \alpha_n \beta_n Z_{i-1, j-1}(n) + \varepsilon_{ij}$ is obtained when $\alpha_n$ and $\beta_n$ are near unit roots. When $\alpha_n$ and $\beta_n$ are reparameterized by $\alpha_n = e^{c/n}$ and $\beta_n = e^{d/n}$, it is shown that if the "one-step Gauss-Newton estimator" of $\lambda_1 \alpha_n + \lambda_2 \beta_n$ is properly normalized and embedded in the function space $D([0, 1]^2)$, the limiting distribution is a Gaussian process. The key idea in the proof relies on a maximal inequality for a two-parameter martingale which may be of independent interest. A simulation study illustrates the speed of convergence and goodness-of-fit of these estimators for various sample sizes.
Publié le : 1997-08-14
Classification:  Spatial autoregressive process,  near unit roots,  Gauss-Newton estimation,  central limit theory,  62F12,  62M30,  60F17
@article{1031594738,
     author = {Bhattacharyya, B. B. and Richardson, G. D. and Franklin, L. A.},
     title = {Asymptotic inference for near unit roots in spatial autoregression},
     journal = {Ann. Statist.},
     volume = {25},
     number = {6},
     year = {1997},
     pages = { 1709-1724},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1031594738}
}
Bhattacharyya, B. B.; Richardson, G. D.; Franklin, L. A. Asymptotic inference for near unit roots in spatial autoregression. Ann. Statist., Tome 25 (1997) no. 6, pp.  1709-1724. http://gdmltest.u-ga.fr/item/1031594738/