Smoothed Cox regression
Dabrowska, Dorota M.
Ann. Statist., Tome 25 (1997) no. 6, p. 1510-1540 / Harvested from Project Euclid
Nonparametric regression was shown by Beran and McKeague and Utikal to provide a flexible method for analysis of censored failure times and more general counting processes models in the presence of covariates. We discuss application of kernel smoothing towards estimation in a generalized Cox regression model with baseline intensity dependent on a covariate. Under regularity conditions we show that estimates of the regression parameters are asymptotically normal at rate root-n, and we also discuss estimation of the baseline cumulative hazard function and related parameters.
Publié le : 1997-08-14
Classification:  Kernel estimation,  counting processes,  hazard functions estimation,  62G05,  62M09
@article{1031594730,
     author = {Dabrowska, Dorota M.},
     title = {Smoothed Cox regression},
     journal = {Ann. Statist.},
     volume = {25},
     number = {6},
     year = {1997},
     pages = { 1510-1540},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1031594730}
}
Dabrowska, Dorota M. Smoothed Cox regression. Ann. Statist., Tome 25 (1997) no. 6, pp.  1510-1540. http://gdmltest.u-ga.fr/item/1031594730/