Stochastic Euler equations on the torus
Capiński, Marek ; Cutland, Nigel J.
Ann. Appl. Probab., Tome 9 (1999) no. 1, p. 688-705 / Harvested from Project Euclid
Existence of solutions for stochastic Euler equations is proved for the two-dimensional case. The laws of solutions of stochastic Navier-Stokes equations are shown to be relatively compact and all limit points (as the viscosity converges to zero) are laws of solutions to stochastic Euler equations.
Publié le : 1999-08-14
Classification:  Stochastic equations,  Euler equations,  statistical solutions,  60H15,  35Q05,  36R60
@article{1029962809,
     author = {Capi\'nski, Marek and Cutland, Nigel J.},
     title = {Stochastic Euler equations on the torus},
     journal = {Ann. Appl. Probab.},
     volume = {9},
     number = {1},
     year = {1999},
     pages = { 688-705},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1029962809}
}
Capiński, Marek; Cutland, Nigel J. Stochastic Euler equations on the torus. Ann. Appl. Probab., Tome 9 (1999) no. 1, pp.  688-705. http://gdmltest.u-ga.fr/item/1029962809/