Log-Sobolev inequalities and sampling from log-concave distributions
Frieze, Alan ; Kannan, Ravi
Ann. Appl. Probab., Tome 9 (1999) no. 1, p. 14-26 / Harvested from Project Euclid
We consider the problem of sampling according to a distribution with log-concave density F over a convex body $K \subseteq \mathbf{R}^n$. The sampling is done using a biased random walk and we give improved polynomial upper bounds on the time to get a sample point with distribution close to F.
Publié le : 1999-02-14
Classification:  Log-Sobolev inequalities,  Markov chains,  random walks,  log-concave,  68Q20,  60J15
@article{1029962595,
     author = {Frieze, Alan and Kannan, Ravi},
     title = {Log-Sobolev inequalities and sampling from log-concave
		 distributions},
     journal = {Ann. Appl. Probab.},
     volume = {9},
     number = {1},
     year = {1999},
     pages = { 14-26},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1029962595}
}
Frieze, Alan; Kannan, Ravi. Log-Sobolev inequalities and sampling from log-concave
		 distributions. Ann. Appl. Probab., Tome 9 (1999) no. 1, pp.  14-26. http://gdmltest.u-ga.fr/item/1029962595/