An Edgeworth expansion for symmetric finite population statistics
Bloznelis, M. ; Götze, F.
Ann. Probab., Tome 30 (2002) no. 1, p. 1238-1265 / Harvested from Project Euclid
Let T be a symmetric statistic based on sample of size n drawn without replacement from a finite population of size N, where $N>n$. Assuming that the linear part of Hoeffding's decomposition of T is nondegenerate we construct a one term Edgeworth expansion for the distribution function of T and prove the validity of the expansion with the remainder $O(1/n^*)$ as $n^*\to \infty$, where $n^*=\min\{n,N-n\}$.
Publié le : 2002-07-14
Classification:  Edgeworth expansion,  finite population,  Hoeffding decomposition,  sampling without replacement,  62E20,  60F05
@article{1029867127,
     author = {Bloznelis, M. and G\"otze, F.},
     title = {An Edgeworth expansion for symmetric finite population statistics},
     journal = {Ann. Probab.},
     volume = {30},
     number = {1},
     year = {2002},
     pages = { 1238-1265},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1029867127}
}
Bloznelis, M.; Götze, F. An Edgeworth expansion for symmetric finite population statistics. Ann. Probab., Tome 30 (2002) no. 1, pp.  1238-1265. http://gdmltest.u-ga.fr/item/1029867127/