Chernoff-type bound for finite Markov chains
Lezaud, Pascal
Ann. Appl. Probab., Tome 8 (1998) no. 1, p. 849-867 / Harvested from Project Euclid
This paper develops bounds on the distribution function of the empirical mean for irreducible finite-state Markov chains. One approach, explored by Gillman, reduces this problem to bounding the largest eigenvalue of a perturbation of the transition matrix for the Markov chain. By using estimates on eigenvalues given in Kato's book Perturbation Theory for Linear Operators, we simplify the proof of Gillman and extend it to nonreversible finite-state Markov chains and continuous time. We also set out another method, directly applicable to some general ergodic Markov kernels having a spectral gap.
Publié le : 1998-08-14
Classification:  Markov chain,  Chernoff bound,  eigenvalues,  perturbation theory,  60F10
@article{1028903453,
     author = {Lezaud, Pascal},
     title = {Chernoff-type bound for finite Markov chains},
     journal = {Ann. Appl. Probab.},
     volume = {8},
     number = {1},
     year = {1998},
     pages = { 849-867},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1028903453}
}
Lezaud, Pascal. Chernoff-type bound for finite Markov chains. Ann. Appl. Probab., Tome 8 (1998) no. 1, pp.  849-867. http://gdmltest.u-ga.fr/item/1028903453/