Scaling laws and convergence for the advection-diffusion equation
Gaudron, Guillaume
Ann. Appl. Probab., Tome 8 (1998) no. 1, p. 649-663 / Harvested from Project Euclid
In this paper we study the convergence of stochastic processes related to a random partial differential equation (PDE with random coefficients) of heat equation propagation type in a Kolmogorov's random velocity field. Then we are able to improve the results of Avellanda and Majda in the case of "shear-flow" advection-diffusion because we prove a convergence in law of the solution of the RPDE instead of just convergence of the moments.
Publié le : 1998-08-14
Classification:  Scaling laws,  random media,  advection-diffusion,  stochastic processes,  35R60,  60J60,  76F10
@article{1028903445,
     author = {Gaudron, Guillaume},
     title = {Scaling laws and convergence for the advection-diffusion
		 equation},
     journal = {Ann. Appl. Probab.},
     volume = {8},
     number = {1},
     year = {1998},
     pages = { 649-663},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1028903445}
}
Gaudron, Guillaume. Scaling laws and convergence for the advection-diffusion
		 equation. Ann. Appl. Probab., Tome 8 (1998) no. 1, pp.  649-663. http://gdmltest.u-ga.fr/item/1028903445/