On convergence rates of Gibbs samplers for uniform distributions
Roberts, Gareth O. ; Rosenthal, Jeffrey S.
Ann. Appl. Probab., Tome 8 (1998) no. 1, p. 1291-1302 / Harvested from Project Euclid
We consider a Gibbs sampler applied to the uniform distribution on a bounded region $R \subseteq \mathbf{R}^d$. We show that the convergence properties of the Gibbs sampler depend greatly on the smoothness of the boundary of R. Indeed, for sufficiently smooth boundaries the sampler is uniformly ergodic, while for jagged boundaries the sampler could fail to even be geometrically ergodic.
Publié le : 1998-11-14
Classification:  Gibbs sampler,  Markov chain,  Monte Carlo,  slice sampler,  uniform distribution,  curvature,  60J05,  62M05
@article{1028903381,
     author = {Roberts, Gareth O. and Rosenthal, Jeffrey S.},
     title = {On convergence rates of Gibbs samplers for uniform
		 distributions},
     journal = {Ann. Appl. Probab.},
     volume = {8},
     number = {1},
     year = {1998},
     pages = { 1291-1302},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1028903381}
}
Roberts, Gareth O.; Rosenthal, Jeffrey S. On convergence rates of Gibbs samplers for uniform
		 distributions. Ann. Appl. Probab., Tome 8 (1998) no. 1, pp.  1291-1302. http://gdmltest.u-ga.fr/item/1028903381/