Bayes estimation of the mean of a multivariate normal distribution is considered under quadratic loss. We show that, when particular spherical priors are used, the superharmonicity of the square root of the marginal density provides a viable method for constructing (possibly proper) Bayes (and admissible) minimax estimators. Examples illustrate the theory; most notably it is shown that a multivariate Student-$t$ prior yields a proper Bayes minimax estimate.
@article{1028144853,
author = {Fourdrinier, Dominique and Strawderman, William E. and Wells, Martin T.},
title = {On the construction of Bayes minimax estimators},
journal = {Ann. Statist.},
volume = {26},
number = {3},
year = {1998},
pages = { 660-671},
language = {en},
url = {http://dml.mathdoc.fr/item/1028144853}
}
Fourdrinier, Dominique; Strawderman, William E.; Wells, Martin T. On the construction of Bayes minimax estimators. Ann. Statist., Tome 26 (1998) no. 3, pp. 660-671. http://gdmltest.u-ga.fr/item/1028144853/