Symmetry and lattice conditional independence in a multivariate normal distribution
Andersson, Steen ; Madsen, Jesper
Ann. Statist., Tome 26 (1998) no. 3, p. 525-572 / Harvested from Project Euclid
A class of multivariate normal models with symmetry restrictions given by a finite group and conditional independence restrictions given by a finite distributive lattice is defined and studied. The statistical properties of these models including maximum likelihood inference, invariance and hypothesis testing are discussed.
Publié le : 1998-04-14
Classification:  Group symmetry,  invariance,  orthogonal group representation,  quotient space,  conditional independence,  distributive lattice,  join-irreducible elements,  maximum likelihood estimator,  likelihood ratio test,  multivariate normal distribution,  62H12,  62H15,  62H10,  62H20,  62A05
@article{1028144848,
     author = {Andersson, Steen and Madsen, Jesper},
     title = {Symmetry and lattice conditional independence in a multivariate normal distribution},
     journal = {Ann. Statist.},
     volume = {26},
     number = {3},
     year = {1998},
     pages = { 525-572},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1028144848}
}
Andersson, Steen; Madsen, Jesper. Symmetry and lattice conditional independence in a multivariate normal distribution. Ann. Statist., Tome 26 (1998) no. 3, pp.  525-572. http://gdmltest.u-ga.fr/item/1028144848/