Directional decay of the Green's function for a random nonnegative potential on ${\bf Z}\sp d$
Zerner, Martin P. W.
Ann. Appl. Probab., Tome 8 (1998) no. 1, p. 246-280 / Harvested from Project Euclid
We derive a shape theorem type result for the almost sure exponential decay of the Green's function of $-\Delta + V$, where the potentials $V(x), x \epsilon \mathbb{Z}^d$ are i.i.d. nonnegative random variables. This result implies a large deviation principle governing the position of a d-dimensional random walk moving in the same potential.
Publié le : 1998-02-14
Classification:  Random walk,  random potential,  Green's function,  asymptotic shape,  first passage percolation,  Lyapounov exponent,  large deviations,  60K35,  82D30
@article{1027961043,
     author = {Zerner, Martin P. W.},
     title = {Directional decay of the Green's function for a random nonnegative
		 potential on ${\bf Z}\sp d$},
     journal = {Ann. Appl. Probab.},
     volume = {8},
     number = {1},
     year = {1998},
     pages = { 246-280},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1027961043}
}
Zerner, Martin P. W. Directional decay of the Green's function for a random nonnegative
		 potential on ${\bf Z}\sp d$. Ann. Appl. Probab., Tome 8 (1998) no. 1, pp.  246-280. http://gdmltest.u-ga.fr/item/1027961043/