Large deviations of combinatorial distributions. II. Local limit theorems
Hwang, Hsien-Kuei
Ann. Appl. Probab., Tome 8 (1998) no. 1, p. 163-181 / Harvested from Project Euclid
We derive a general local limit theorem for probabilities of large deviations for a sequence of random variables by means of the saddlepoint method on Laplace-type integrals. This result is applicable to parameters in a number of combinatorial structures and the distribution of additive arithmetical functions.
Publié le : 1998-02-14
Classification:  Large deviations,  local limit theorems,  asymptotic expansion,  saddle-point method,  combinatorial schemes,  singularity analysis,  additive arithmetical functions,  60F10,  05A16,  11K65
@article{1027961038,
     author = {Hwang, Hsien-Kuei},
     title = {Large deviations of combinatorial distributions. II. Local limit
		 theorems},
     journal = {Ann. Appl. Probab.},
     volume = {8},
     number = {1},
     year = {1998},
     pages = { 163-181},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1027961038}
}
Hwang, Hsien-Kuei. Large deviations of combinatorial distributions. II. Local limit
		 theorems. Ann. Appl. Probab., Tome 8 (1998) no. 1, pp.  163-181. http://gdmltest.u-ga.fr/item/1027961038/