A note on Metropolis-Hastings kernels for general state spaces
Tierney, Luke
Ann. Appl. Probab., Tome 8 (1998) no. 1, p. 1-9 / Harvested from Project Euclid
The Metropolis-Hastings algorithm is a method of constructing a reversible Markov transition kernel with a specified invariant distribution. This note describes necessary and sufficient conditions on the candidate generation kernel and the acceptance probability function for the resulting transition kernel and invariant distribution to satisfy the detailed balance conditions. A simple general formulation is used that covers a range of special cases treated separately in the literature. In addition, results on a useful partial ordering of finite state space reversible transition kernels are extended to general state spaces and used to compare the performance of two approaches to using mixtures in Metropolis-Hastings kernels.
Publié le : 1998-02-14
Classification:  Markov chain Monte Carlo,  Peskun's theorem,  mixture kernels,  60J05,  65C05,  62-04
@article{1027961031,
     author = {Tierney, Luke},
     title = {A note on Metropolis-Hastings kernels for general state
		 spaces},
     journal = {Ann. Appl. Probab.},
     volume = {8},
     number = {1},
     year = {1998},
     pages = { 1-9},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1027961031}
}
Tierney, Luke. A note on Metropolis-Hastings kernels for general state
		 spaces. Ann. Appl. Probab., Tome 8 (1998) no. 1, pp.  1-9. http://gdmltest.u-ga.fr/item/1027961031/