@article{102500, author = {Jaroslav Kurzweil and Jean Mawhin and Washek Frank Pfeffer}, title = {An integral defined by approximating $BV$ partitions of unity}, journal = {Czechoslovak Mathematical Journal}, volume = {41}, year = {1991}, pages = {695-712}, zbl = {0763.26007}, mrnumber = {1134958}, language = {en}, url = {http://dml.mathdoc.fr/item/102500} }
Kurzweil, Jaroslav; Mawhin, Jean; Pfeffer, Washek Frank. An integral defined by approximating $BV$ partitions of unity. Czechoslovak Mathematical Journal, Tome 41 (1991) pp. 695-712. http://gdmltest.u-ga.fr/item/102500/
On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighbourhood of non-isolated singular points, Proc. London Math. Soc., 32: 1-9, 1931. (1931) | Article
The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985. (1985) | MR 0867284 | Zbl 0587.28004
Geometric Measure Theory, Springer-Verlag, New York, 1969. (1969) | MR 0257325 | Zbl 0176.00801
Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1984. (1984) | MR 0775682 | Zbl 0545.49018
Theory of Integration, Butterworth, London, 1963. (1963) | MR 0158047 | Zbl 0154.05001
Analyticity of almost everywhere differentiable functions, Proc. American Math. Soc., to appear. | MR 1027093 | Zbl 0705.30001
A nonabsoluteIy convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J., 35: 116-139, 1985. (1985) | MR 0779340
A new and more powerful concept of the $PU$-integral, Czechoslovak Math. J., 38: 8-48, 1988. (1988) | MR 0925939
Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 82: 418-446, 1957. (1957) | MR 0111875 | Zbl 0090.30002
The $PU$-integral: its definition and some basic properties, In New integrals, Lecture Notes in Math. 1419, pages 66-81, Springer-Verlag, New York, 1990. (1990) | MR 1051921
The Gauss-Green theorem, Advances in Mathematics, to appear. | MR 0995997 | Zbl 1089.26006
A Riemann type definition of a variational integral, To appear. | MR 1072090 | Zbl 0749.26006
A Volterra type derivative of the Lebesgue integral, To appear. | MR 1135079 | Zbl 0789.28005
The multidimensional fundamental theorem of calculus, J. Australian Math. Soc., 43: 143-170, 1987. (1987) | Article | MR 0896622 | Zbl 0638.26011
Real and Complex Analysis, McGraw-Hill, New York, 1987. (1987)
Theory of the Integral, Dover, New York, 1964. (1964) | MR 0167578
On the integrability of a product, J. London Math. Soc., 23: 28-34, 1948. (1948) | Article | MR 0026113 | Zbl 0031.29201
The spaces $BV$ and quasilinear equations, Math. USSR-Sbornik, 2: 225-267, 1967. (1967) | Article | MR 0216338
Weakly Differentiable Functions, Springer-Verlag, New York, 1989. (1989) | MR 1014685 | Zbl 0692.46022