@article{102486, author = {Mircea Malarski and Hans Triebel}, title = {Anisotropic function spaces: Hardy's inequality and traces on surfaces}, journal = {Czechoslovak Mathematical Journal}, volume = {41}, year = {1991}, pages = {518-537}, zbl = {0767.46031}, mrnumber = {1117805}, language = {en}, url = {http://dml.mathdoc.fr/item/102486} }
Malarski, Mircea; Triebel, Hans. Anisotropic function spaces: Hardy's inequality and traces on surfaces. Czechoslovak Mathematical Journal, Tome 41 (1991) pp. 518-537. http://gdmltest.u-ga.fr/item/102486/
Integral representations of functions and embedding theorems, (Russian). Moscow: Nauka 1975 [English edition: Scripta Series in Mathematics, Washington: Halsted Press; New York-Toronto-London: V. H. Winston & Sons 1978/1979]. (1975) | MR 0430771
Approximation of functions of several variables and embedding theorems. Second edition, (Russian). Moscow: Nauka 1977 [English translation of the first edition: Berlin-Heidelberg-New York: Springer-Verlag 1975]. (1977) | MR 0374877
Topics in Fourier analysis nad function spaces, Leipzig: Akad. Verlagsgesellschaft Geest & Portig 1987 and Chichester: Wiley 1987. (1987)
Interpolation Theory, Function spaces, Differential Operators, North-Holland Publ. Comp., Amsterdam-New York-Oxford: 1978. (1978) | MR 0503903 | Zbl 0387.46033
Anisotropic function spaces I, II, Anal. Math. 10 (1984), 53-77, 79-96. (1984) | Article
A priori estimates and boundary value problems for semi-elliptic differential equations: A model case, Comm. Partial Differential Equations 8 (1983), 1621-1664. (1983) | Article | MR 0729196 | Zbl 0548.35052
On embedding theorems for functions in domains I, (Russian), Sibirsk. Math. Ž. 7 (1966), 650-663. (1966)
On traces of functions of the Sobolev class $W\sb{p}\sp{1\sb{1}\ldots 1\sb{n}}$ on smooth surfaces, (Russian). Sibirsk. Math. Ž. 13 (1972), 429-451. (1972) | MR 0312252
Embedding theorems and applications to differential equations, (Russian). Novosibirsk: Nauka, 1984. (1984)