Qualitative behavior of a generalized Emden-Fowler differential system
Erbe, Lynn H. ; Liang, Zhong Chao
Czechoslovak Mathematical Journal, Tome 41 (1991), p. 454-466 / Harvested from Czech Digital Mathematics Library
Publié le : 1991-01-01
Classification:  34A34,  34C10,  34C11
@article{102480,
     author = {Lynn H. Erbe and Zhong Chao Liang},
     title = {Qualitative behavior of a generalized Emden-Fowler differential system},
     journal = {Czechoslovak Mathematical Journal},
     volume = {41},
     year = {1991},
     pages = {454-466},
     zbl = {0756.34034},
     mrnumber = {1117799},
     language = {en},
     url = {http://dml.mathdoc.fr/item/102480}
}
Erbe, Lynn H.; Liang, Zhong Chao. Qualitative behavior of a generalized Emden-Fowler differential system. Czechoslovak Mathematical Journal, Tome 41 (1991) pp. 454-466. http://gdmltest.u-ga.fr/item/102480/

Bhatia N. P. Some oscillation theorems for second order differential equations, J. Math. Anal. Appl. 15 (1966), 442-446. (1966) | Article | MR 0203164 | Zbl 0144.11104

Bihari I. Research of the boundedness and stability of the solutions of nonlinear differential equations, Acta Math. Hungar. 8 (1957), 261 - 278. (1957) | Article | MR 0094516

Hatvani L. On the asymptotic behavior of solutions of $(p(t) x')' + q(t)f(x) = 0$, Publ. Math. Debrecen 19 (1972), 225-237. (1972) | MR 0326064

Kwong Man Kam; Wong J. S. W. Oscillation of Emden-Fowler Systems, Diff. Integ. Eqs. 1(1988), 133-141. (1988) | MR 0922556 | Zbl 0715.34059

Kroopnik A. Oscillation properties of $(m(t) х')' + a(t) b(x) = 0$, J. Math. Anal. Appl. 63 (1978), 141-144. (1978) | Article | MR 0466747

Liang Z. Asymptotic character of the solutions of a class of second order nonlinear differential equations, Shuxue Jinzhan 9 (1966), 251 - 264. MR 38#4767. (1966) | MR 0236472

Liang Z. Asymptotically periodic solutions of a class of second order nonlinear differential equations, Proc. Amer. Math. Soc. 99 (1987), 693-699. (1987) | Article | MR 0877042 | Zbl 0625.34048

Liang Z. Necessary and sufficient conditions of the stability for a class of second order nonlinear oscillations, Funkcial. Ekvac. 30 (1987), 45-55. (1987) | MR 0915260 | Zbl 0638.34030

Petty C. M.; Johnson W. E. Properties of solutions of $u\sp{\prime\prime}+c(t)f(u)h(u\sp{\prime} )=0$ with explicit initial conditions, SIAM J. Math. Anal. 4 (1973), 269-282. (1973) | Article | MR 0335947

Utz W. R. Properties of solutions of $u\sp{\prime\prime}+g(t)u\sp{2n-1}=0$, Monatsh. Math. 66 (1962), 55-60. (1962) | MR 0138834

Wong J. S. W.; Burton T. A. Some properties of solutions of $u\sp{\prime\prime}(t)+a(t)f(u)g(u\sp{\prime} )=0$. (II), Monatsh. Math. 69 (1965), 368-374. (1965) | MR 0186885

Wong J. S. W. Some properties of solutions of $u\sp{\prime\prime}(t)+a(t)f(u)g(u\sp{\prime} )=0$. (III), SIAM J. Appl. Math. 14(1966), 209-214. (1966) | MR 0203167

Wong J. S. W. Boundedness theorems of solutions of $u\sp{\prime\prime}(t)+a(t)f(u)g(u\sp{\prime} )=0$. (IV), Enseign. Math. 13 (1967), 157-165. (1967) | MR 0234059

Wong J. S. W. On the generalized Emden-Fowler equations, SIAM Rev. 17 (1975), 339-360. (1975) | Article | MR 0367368

Yoshizawa T. Stability theory by Liapunov's second method, Math. Soc. Japan, Tokyo, 1966. (1966) | MR 0208086