Asymptotically efficient estimation in the Wicksell problem
Golubev, G. K. ; Levit, B. Y.
Ann. Statist., Tome 26 (1998) no. 3, p. 2407-2419 / Harvested from Project Euclid
We consider the classical Wicksell problem of estimating an unknown distribution function $G$of the radii of balls, based on their observed crosssections. It is assumed that the underlying distribution function$G$ belongs to a Hölder class of smoothness $\gamma >1/2$. We prove that, for a suitable choice of the smoothing parameters, kernel-type estimators are asymptotically efficient for a large class of symmetric bowl-shaped loss functions.
Publié le : 1998-12-14
Classification:  Wicksell’s problem,  Hölder classes,  fractional derivatives,  kernel density estimators,  62G05,  62G20,  62C20,  62E20
@article{1024691477,
     author = {Golubev, G. K. and Levit, B. Y.},
     title = {Asymptotically efficient estimation in the Wicksell
		 problem},
     journal = {Ann. Statist.},
     volume = {26},
     number = {3},
     year = {1998},
     pages = { 2407-2419},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1024691477}
}
Golubev, G. K.; Levit, B. Y. Asymptotically efficient estimation in the Wicksell
		 problem. Ann. Statist., Tome 26 (1998) no. 3, pp.  2407-2419. http://gdmltest.u-ga.fr/item/1024691477/