A new nonparametric estimation procedure is introduced for the
distribution function in a class of deconvolution problems, where the
convolution density has one discontinuity. The estimator is shown to be
consistent and its cube root asymptotic distribution theory is established.
Known results on the minimax risk for the estimation problem indicate the
estimator to be efficient.
@article{1024691476,
author = {van Es, Bert and Jongbloed, Geurt and van Zuijlen, Martien},
title = {Isotonic inverse estimators for nonparametric
deconvolution},
journal = {Ann. Statist.},
volume = {26},
number = {3},
year = {1998},
pages = { 2395-2406},
language = {en},
url = {http://dml.mathdoc.fr/item/1024691476}
}
van Es, Bert; Jongbloed, Geurt; van Zuijlen, Martien. Isotonic inverse estimators for nonparametric
deconvolution. Ann. Statist., Tome 26 (1998) no. 3, pp. 2395-2406. http://gdmltest.u-ga.fr/item/1024691476/