We derive a strong approximation of a local polynomial estimator LPE
in nonparametric autoregression by an (LPE) in a corresponding nonparametric
regression model. This generally suggests the application of regression-typical
tools for statistical inference in nonparametric autoregressive models. It
provides an important simplification for the boot-strap method to be used: It
is enough to mimic the structure of a nonparametric regression model rather
than to imitate the more complicated process structure in the autoregressive
case. As an example we consider a simple wild bootstrap, which is used for the
construction of simultaneous confidence bands and nonparametric supremum-type
tests.
@article{1024691254,
author = {Neumann, Michael H. and Kreiss, Jens-Peter},
title = {Regression-type inference in nonparametric autoregression},
journal = {Ann. Statist.},
volume = {26},
number = {3},
year = {1998},
pages = { 1570-1613},
language = {en},
url = {http://dml.mathdoc.fr/item/1024691254}
}
Neumann, Michael H.; Kreiss, Jens-Peter. Regression-type inference in nonparametric autoregression. Ann. Statist., Tome 26 (1998) no. 3, pp. 1570-1613. http://gdmltest.u-ga.fr/item/1024691254/