We attempt to recover an unknown function from noisy, sampled data.
Using orthonormal bases of compactly supported wavelets, we develop a nonlinear
method which works in the wavelet domain by simple nonlinear shrinkage of the
empirical wavelet coefficients. The shrinkage can be tuned to be nearly minimax
over any member of a wide range of Triebel- and Besov-type smoothness
constraints and asymptotically mini-max over Besov bodies with $p \leq q$.
Linear estimates cannot achieve even the minimax rates over Triebel and Besov
classes with $p<2$, so the method can significantly outperform every linear
method (e.g., kernel, smoothing spline, sieve in a minimax sense). Variants of
our method based on simple threshold nonlinear estimators are nearly minimax.
Our method possesses the interpretation of spatial adaptivity; it
reconstructs using a kernel which may vary in shape and bandwidth from point to
point, depending on the data. Least favorable distributions for certain of the
Triebel and Besov scales generate objects with sparse wavelet transforms. Many
real objects have similarly sparse transforms, which suggests that these
minimax results are relevant for practical problems. Sequels to this paper,
which was first drafted in November 1990, discuss practical implementation,
spatial adaptation properties, universal near minimaxity and applications to
inverse problems.
Publié le : 1998-06-14
Classification:
Minimax decision theory,
minimax Bayes estimation,
Besov,
Hölder,
Sobolev,
Triebel spaces,
nonlinear estimation,
white noise model,
nonparametric regression,,
orthonormal bases of compactly supported wavelets,
renormalization,
white noise approximation,
62G07,
62C20,
62G20,
41A30
@article{1024691081,
author = {Donoho, David L. and Johnstone, Iain M.},
title = {Minimax estimation via wavelet shrinkage},
journal = {Ann. Statist.},
volume = {26},
number = {3},
year = {1998},
pages = { 879-921},
language = {en},
url = {http://dml.mathdoc.fr/item/1024691081}
}
Donoho, David L.; Johnstone, Iain M. Minimax estimation via wavelet shrinkage. Ann. Statist., Tome 26 (1998) no. 3, pp. 879-921. http://gdmltest.u-ga.fr/item/1024691081/