Some best possible prophet inequalities for convex functions of sums of independent variates and unordered martingale difference sequences
Choi, K. P. ; Klass, Michael J.
Ann. Probab., Tome 25 (1997) no. 4, p. 803-811 / Harvested from Project Euclid
Let $\Phi (\cdot)$ be a nondecreasing convex function on $[0, \infty)$. We show that for any integer $n \geq 1$ and real $a$, $$E \Phi ((M_n - a)^+) \leq 2E \Phi ((S_n - a)^+) - \Phi (0)$$ and $$E(M_n \bigvee \med S_n) \leq E|S_n - \med S_n|.$$ where $X_1, X_2, \dots$ are any independent mean zero random variables with partial sums $S_0 = 0, S_k = X_1 + \dots + X_k$ and partial sum maxima $M_n = \max_{0 \leq k \leq n} S_k$. There are various instances in which these inequalities are best possible for fixed $n$ and/or as $n \to \infty$. These inequalities remain valid if $\{X_k\}$ is a martingale difference sequence such that $E(X_k \{X_i; i \not= k\}) = 0$ a.s. for each $k \geq 1$. Modified versions of these inequalities hold if the variates have arbitrary means but are independent.
Publié le : 1997-04-14
Classification:  Maximum of partial sums,  sums of independent random variables,  prophet inequalities,  median,  unordered martingale difference sequence,  convex function,  60E15,  60G50,  60G40,  60G42,  60J15
@article{1024404420,
     author = {Choi, K. P. and Klass, Michael J.},
     title = {Some best possible prophet inequalities for convex functions of
 sums of independent variates and unordered martingale difference
 sequences},
     journal = {Ann. Probab.},
     volume = {25},
     number = {4},
     year = {1997},
     pages = { 803-811},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1024404420}
}
Choi, K. P.; Klass, Michael J. Some best possible prophet inequalities for convex functions of
 sums of independent variates and unordered martingale difference
 sequences. Ann. Probab., Tome 25 (1997) no. 4, pp.  803-811. http://gdmltest.u-ga.fr/item/1024404420/