The random difference equation $X\sb n=A\sb nX\sb {n-1}+B\sb n$ in the critical case
Babillot, Martine ; Bougerol, Philippe ; Elie, Laure
Ann. Probab., Tome 25 (1997) no. 4, p. 478-493 / Harvested from Project Euclid
Let $(B_n, A_n)_{n \geq 1}$ be a sequence of i.i.d. random variables with values in $\mathbf{R}^d \times \mathbf{R}_*^+$. The Markov chain on $\mathbf{R}^d$ which satisfies the random equa tion $X_n = A_n X_{n-1} + B_n$ is studied when $\mathbf{E}(\log A_1) = 0$. No density assumption on the distribution of $(B_1, A_1)$ is made. The main results are recurrence of the Markov chain $X_n$, stability properties of the paths, existence and uniqueness of a Radon invariant measure and a limit theorem for the occupation times. The results rely on a renewal theorem for the process $(X_n, A_n \dots A_1)$.
Publié le : 1997-01-14
Classification:  Random coefficient autoregressive models,  random walk,  affine group,  stability,  renewal theorem,  limit theorem,  60J10,  60K05,  60B15,  60J15
@article{1024404297,
     author = {Babillot, Martine and Bougerol, Philippe and Elie, Laure},
     title = {The random difference equation $X\sb n=A\sb nX\sb {n-1}+B\sb n$ in
		 the critical case},
     journal = {Ann. Probab.},
     volume = {25},
     number = {4},
     year = {1997},
     pages = { 478-493},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1024404297}
}
Babillot, Martine; Bougerol, Philippe; Elie, Laure. The random difference equation $X\sb n=A\sb nX\sb {n-1}+B\sb n$ in
		 the critical case. Ann. Probab., Tome 25 (1997) no. 4, pp.  478-493. http://gdmltest.u-ga.fr/item/1024404297/