Long time existence for the wave equation with a noise term
Mueller, Carl
Ann. Probab., Tome 25 (1997) no. 4, p. 133-151 / Harvested from Project Euclid
.1 2 We consider the equation $u_{tt} = \Delta u + a(u) \mathsf{N}$ for $x \epsilon \mathbf{R}^1$ or $R^2$. $\mathsf{N}$ is a Gaussian noise term, which is white noise if $x \epsilon \mathbf{R}^1$. If $a(u)$ grows no faster than $u (\log u)^{1/2-\varepsilon}$, then there is a unique solution valid for all time.
Publié le : 1997-01-14
Classification:  Wave equation,  white noise,  stochastic partial differential equations,  60H15,  35R60,  35L05
@article{1024404282,
     author = {Mueller, Carl},
     title = {Long time existence for the wave equation with a noise
		 term},
     journal = {Ann. Probab.},
     volume = {25},
     number = {4},
     year = {1997},
     pages = { 133-151},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1024404282}
}
Mueller, Carl. Long time existence for the wave equation with a noise
		 term. Ann. Probab., Tome 25 (1997) no. 4, pp.  133-151. http://gdmltest.u-ga.fr/item/1024404282/