@article{102415, author = {Eduard Feireisl}, title = {Invariant regions associated with quasilinear damped wave equations}, journal = {Czechoslovak Mathematical Journal}, volume = {40}, year = {1990}, pages = {612-618}, zbl = {0757.35043}, mrnumber = {1084897}, language = {en}, url = {http://dml.mathdoc.fr/item/102415} }
Feireisl, Eduard. Invariant regions associated with quasilinear damped wave equations. Czechoslovak Mathematical Journal, Tome 40 (1990) pp. 612-618. http://gdmltest.u-ga.fr/item/102415/
Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26, 373-392 (1977). (1977) | Article | MR 0430536 | Zbl 0368.35040
Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18, 409-421 (1987). (1987) | Article | MR 0876280 | Zbl 0655.35055
Convergence of approximate solutions to conservation laws, Arch. Rational. Mech. Anal. 82, 27-70 (1983). (1983) | Article | MR 0684413 | Zbl 0519.35054
Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations, Apl.Mat.55(3), 192-208(1990). (1990) | MR 1052740 | Zbl 0737.35040
Weakly damped quasilinear wave equation: Existence of time-periodic solutions, to appear in Nonlinear Anal. T.M.A. | MR 1131015 | Zbl 0757.35044
Un résultat de „compacité par compensation à coefficients variables, Application à l'élasticité non linéaire. C. R. Acad. Sc. Paris 302 Sér. I 8, 311-314 (1986). (1986) | MR 0838582 | Zbl 0606.35054
La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. Pures et Appl. 65, 423-468 (1986). (1986) | MR 0881690