Invariant regions associated with quasilinear damped wave equations
Feireisl, Eduard
Czechoslovak Mathematical Journal, Tome 40 (1990), p. 612-618 / Harvested from Czech Digital Mathematics Library
Publié le : 1990-01-01
Classification:  35B25,  35K22,  35L70
@article{102415,
     author = {Eduard Feireisl},
     title = {Invariant regions associated with quasilinear damped wave equations},
     journal = {Czechoslovak Mathematical Journal},
     volume = {40},
     year = {1990},
     pages = {612-618},
     zbl = {0757.35043},
     mrnumber = {1084897},
     language = {en},
     url = {http://dml.mathdoc.fr/item/102415}
}
Feireisl, Eduard. Invariant regions associated with quasilinear damped wave equations. Czechoslovak Mathematical Journal, Tome 40 (1990) pp. 612-618. http://gdmltest.u-ga.fr/item/102415/

Chueh K. N.; Conley C. C.; Smoller J. A. Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26, 373-392 (1977). (1977) | Article | MR 0430536 | Zbl 0368.35040

Dafermos C. M. Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18, 409-421 (1987). (1987) | Article | MR 0876280 | Zbl 0655.35055

Diperna R. J. Convergence of approximate solutions to conservation laws, Arch. Rational. Mech. Anal. 82, 27-70 (1983). (1983) | Article | MR 0684413 | Zbl 0519.35054

Feireisl E. Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations, Apl.Mat.55(3), 192-208(1990). (1990) | MR 1052740 | Zbl 0737.35040

Feireisl E. Weakly damped quasilinear wave equation: Existence of time-periodic solutions, to appear in Nonlinear Anal. T.M.A. | MR 1131015 | Zbl 0757.35044

Rascle M. Un résultat de „compacité par compensation à coefficients variables, Application à l'élasticité non linéaire. C. R. Acad. Sc. Paris 302 Sér. I 8, 311-314 (1986). (1986) | MR 0838582 | Zbl 0606.35054

Serre D. La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. Pures et Appl. 65, 423-468 (1986). (1986) | MR 0881690